Rapid Molecular Detection of Tuberculosis and Rifampin Resistance
Catharina C. Boehme, M.D., Pamela Nabeta, M.D., Doris Hillemann, Ph.D., Mark P. Nicol, Ph.D., Shubhada Shenai, Ph.D., Fiorella Krapp, M.D., Jenny Allen, B.Tech., Rasim Tahirli, M.D., Robert Blakemore, B.S., Roxana Rustomjee, M.D., Ph.D., Ana Milovic, M.S., Martin Jones, Ph.D., Sean M. O'Brien, Ph.D., David H. Persing, M.D., Ph.D., Sabine Ruesch-Gerdes, M.D., Eduardo Gotuzzo, M.D., Camilla Rodrigues, M.D., David Alland, M.D., and Mark D. Perkins, M.D.
September 1, 2010 (10.1056/NEJMoa0907847)
Background
Global control of tuberculosis is hampered by slow, insensitive diagnostic methods, particularly for the detection of drug-resistant forms and in patients with human immunodeficiency virus infection. Early detection is essential to reduce the death rate and interrupt transmission, but the complexity and infrastructure needs of sensitive methods limit their accessibility and effect.
Methods
We assessed the performance of Xpert MTB/RIF, an automated molecular test for Mycobacterium tuberculosis (MTB) and resistance to rifampin (RIF), with fully integrated sample processing in 1730 patients with suspected drug-sensitive or multidrug-resistant pulmonary tuberculosis. Eligible patients in Peru, Azerbaijan, South Africa, and India provided three sputum specimens each. Two specimens were processed with N-acetyl-L-cysteine and sodium hydroxide before microscopy, solid and liquid culture, and the MTB/RIF test, and one specimen was used for direct testing with microscopy and the MTB/RIF test.